Data protection is about finding a balance between the fundamental right to privacy and the increasingly extensive collection of personal data. The goal of information and cyber security is to protect data, services or IT systems from cyber attacks and other threats using technical and organizational measures.
Data analysis approaches, technical and organizational protection measures, societal needs, and economic requirements are in a complex relationship. Typical examples are Internet-of-Things applications where devices send sensor data to the cloud. The cloud manages this data by using Big Data techniques. The sensor data is then analyzed using machine learning or AI, and is used to steer smart city or smart home components eventually. Our concern is to achieve a meaningful level of data protection and security in such scenarios. To this end, our teaching and research covers a wide range of topics, from data analysis approaches over protective measures to compliance frameworks. We research the use of machine learning techniques for learning firewall rules or intrusion detection systems, as well as for de-anonymizing sensor data. We evaluate to which extent machine learning algorithms can be used, when data is in an anonymized form, has a reduced data quality or is stored in a distributed manner in the cloud. We are also interested in workflow privacy patterns, which provide technical or organizational measures for data protection as templates for business processes. At the compliance level, we strive for approaches that mitigate the security risk for the user or the risk of an encroachment on fundamental rights for the persons concerned. Finally, we want to find out whether such approaches conflict with other measures.
In the following, we list all teaching modules, which we offer regularly. The enrollment in the modules takes place via the usual tools of Leipzig University. If you have any questions about enrollment, please contact the Student Office. There are Moodle courses for all modules in which we provide teaching materials and up-to-date information. At this moment, the courses are held in German.
Modulnummer:10-INF-DS105
Belegbarkeit: Vertiefungsmodul im M.Sc. Informatik, Bereich Skalierbares Datenmanagement im M.Sc. Data Science
Teilnahmevoraussetzungen: keine (Anmeldepflicht!)
Das Modul besteht aus einer Vorlesung (2 SWS) und einer Übung (1 SWS) und wird mit 5 LP verrechnet. Die Übung findet in Gruppen statt. Die Lehrmaterialien werden rechtzeitig über einen zugehörigen Moodle-Kurs bereitgestellt.
Inhalt:
Belegbarkeit: Vertiefungsmodul im M.Sc. Informatik, Bereich Skalierbares Datenmanagement im M.Sc. Data Science
Teilnahmevoraussetzungen: keine (Anmeldepflicht!)
Das Seminar (2 SWS) wird mit 5 LP verrechnet.
Inhalt des Seminars: Das Seminar stellt die Studierenden vor die Aufgabe, für sie neue, komplexe Datenschutzprobleme und Datenschutzlösungen zu verstehen und zu bewerten, und diese so aufzubereiten und zu präsentieren, dass sie für Personen ohne Datenschutz-Fachwissen verständlich werden. Dies schließt auch eine Demonstration anhand eines Beispielszenarios ein.
Modulnummer:10-INF-DS106
Belegbarkeit: Bereich Skalierbares Datenmanagement im M.Sc. Data Science
Teilnahmevoraussetzungen: Teilnahme am Modul "Skalierbare Datenbanktechnologien 1" 10-INF-DS01 oder gleichwertige Kenntnisse (Anmeldepflicht!)
Das Modul besteht aus einer Vorlesung (2 SWS) und einem Seminar (1 SWS), und wird mit 5 LP verrechnet.
Inhalt:
Modulnummer: 10-201-2503
Belegbarkeit: M.Sc. Data Science, M.Sc. Informatik, 1./2./3. Semester
Teilnahmevoraussetzungen: keine (Anmeldepflicht)
Das Modul besteht aus einer Vorlesung (2 SWS) und einer Übung (2 SWS), und wird mit 5 LP verrechnet. Die Übung findet in Gruppen statt.
Inhalt:
Das Modul besteht aus einer Vorlesung (2 SWS) und einer Übung (1 SWS), und wird mit 5 LP verrechnet. Die Übung findet in Gruppen statt.
Inhalt:
Wesentliche Inhalte sind Qualitätsmaße, Konzepte, Techniken und Verfahren, die für die erfolgreiche Umsetzung datengetriebene Prozesse und Analysen entlang des gesamten Lebenszyklus der Daten von der Datenerhebung über Data Cleansing und Transformation bis zur Datennutzung und der sicheren langfristigen Aufbewahrung erforderlich sind. Dabei werden sowohl technische Aspekte thematisiert, als auch Fragen des verantwortlichen, ethischen und nachhaltigen Umgangs mit Daten adressiert.
Have you found out about our research topics in our courses and would like to write a Bachelor's or Master's thesis with us?
Then get in touch with us!
Please let us know